
1

INF 117
Project in Software Engineering

Lecture Notes -Spring Quarter, 2008

Michele Rousseau
Set 6 – System Architecture, UML

Set 6 2

What’s Next

Set 6 3

Announcements

kReqs should be complete
●Except minor changes

●Make sure you show the client

kStart working on Design
●UML

kTeam logs due today

Set 6 4

Today’s Class

kDesign 3 Iterations

kSystem Architecture

kUML

Set 6 5

Design Iterations
kIteration #1:

●High Level Design Complete
●As much Detailed (modular level) Complete

as possible
kIteration #2:

●Complete Detailed Design
● Integration Test Plans

kIteration #3:
●Minor changes based on feedback
●Note: you should begin coding after 2nd

iteration
Set 6 6

System Architecture

2

Set 6 7

Software Architecture: Essentials
k Components

● What are the main parts?
● What aspects of the requirements do they

correspond to? Where did they come from?
● Examples: filters, databases, GUIs, interpreters

k Connections
● How do components communicate?
● Examples: procedure calls, messages, pipes, event

broadcast

k Constraints (including constraints on change)

How is it all organized?
Set 6 8

Architectural design process
kSystem structuring

●Decompose the system into principal sub-
systems

● identify communications between them

kControl modelling
●A model of the control relationships between

the different parts of the system

kModular decomposition
●The identified sub-systems are decomposed

into modules

Set 6 9

Architecture Design: Advanced
kArchitectural styles

● Restrict the way in which components can be
connected

● Prescribe patterns of interaction

● Promote fundamental principles

● Common styles: layered, client server, etc

kArchitecture description
● Boxes and arrows

● UML

● Architecture description languages

Set 6 10

From Architecture to Modules
k Repeat the design process

● Design the internal architecture of a component

● Define…
◘ the purpose of each module

◘ the provided interface of each module

◘ the required interface of each module

k Do this over and over again
● Until each module has a simple, well-defined…

◘ …internal architecture

◘ …purpose

◘ …provided interface

◘ …required interface

k Until all modules “hook up”

Set 6 11

Some Principles
kRigor

● ensures all requirements are addressed

kSeparation of concerns
●Modularity

◘allows work in isolation because components are
independent of each other

◘decompose a complex system into less complex
sub-systems; divide & conquer

◘(re-)use existing modules
◘understand the system in pieces

●Abstraction
◘allows work in isolation because well-defined

interfaces guarantee that components will work
together Set 6 12

Some More Principles
k Anticipation of change

● allows changes to be absorbed seamlessly
k What makes a good module?

● High cohesion: all internal parts are closely related.
● Low coupling: modules rely on each other as little as possible
● Information Hiding: Each module hides its internal structure.
● Generality: allows components to be reused throughout the

system
● Incrementality: allows the software to be developed with

intermediate working results

k Remember to document your rationale!

3

UML

Set 6 14

Copyright © 1997 by Rational Software Corporation

UML Concepts
k Display the boundary of a system & its major functions using use

cases and actors

k Illustrate use case realizations with interaction diagrams

k Illustrate scenarios with use case diagrams and sequence
diagrams

k Represent a static structure of a system using class diagrams

k Model the behavior of objects with state transition diagrams

k Reveal the physical implementation architecture with
component & deployment diagrams

Set 6 15

Diagrams in UML
kA diagram is a view into a model
●Presented from the aspect of a particular

stakeholder

●Provides a partial representation of the
system

●Is (should be?) semantically consistent with
other views

Set 6 16

Types of UML Diagrams
Structure .

(6 types)
k Class diagrams
k Object diagram
k Package diagram
k Composite structure

diagram
k Component diagram
k Deployment Diagram

Behavior .
(4 types)
k Activity diagram
k Use Case diagram
k State machine diagram
k Interaction diagrams

● Sequence diagram
● Communication diagram
● Interaction overview

diagram
● Timing diagram

If the appropriate diagram is not part of UML
use it anyways

Set 6 17

UML & the S/W Process
(Design)

Use Cases
Define the system Boundaries

Class Diagrams
● From a software perspective

◘ Show classes & how they interrelate
Sequence Diagrams
● For Common Scenarios

◘ Pick most significant scenarios from Use Cases
◘ Use CRC cards or sequence diagrams to determine how the software should

behave
• Class, Responsibilities, Collaborators (CRC) cards are index cards used to represent

» the responsibilities of classes
» interaction between the classes

Package Diagrams
● Show large-scale organization of the system

State Diagrams
● Used for classes with complex lifecycles

Deployment Diagrams
● Show the physical layout of the software

All of these can be used for design
Set 6 18

Class Diagrams
“A Class Diagram describes the types of

objects in the system and the various kinds
of static relationships that exist among
them”

Class Name

Attributes
(Name:type)

Operations
(Name: Parameters)

Makes it easier
to see

the big picture

– Know what a
class does at a

glance

4

Set 6 19

Attributes and Operations
k Attributes

● Describes a property as a line of text within the class box
● Attribute name corresponds to the name of a field in a

programming language
● Visibility Marker

◘ Denotes whether an attribute is Public (+) or Private (-)

k Operations
● Actions that a class knows to carry out
● Corresponds to methods on a class

Operation & Method are not the same thing
An Operation is the procedure declaration
A Method is the body of a procedure

k Associations
● Describe the relationship between two classes

Set 6 20

Example of a Class
public class Airplane {

public int speed;

public void setSpeed (int
speed) {

this.speed = speed;

}

public int getSpeed() {

The diagram doesn’t tell
us what getSpeed and
setSpeed do or how

they do it

we made some
assumptions

Airplane

+speed: int

getSpeed():Int
setSpeed(int)

Set 6 21

Class Diagram (Example)

What shouldn’t
this be the final

Iteration?

aggregation (“is a part of”)

(“is a” or “is like a”
- polymorphism)

Class Diagrams provide a static model view
of the system Describes the Structure Set 6 22

Sequence Diagrams
kOne type of Interaction Diagram
kAlso describe the behavior of the

system
kDetails how operations are carried out
●What messages are sent when

kOrganized according to time
kObjects listed from left to right
●According to when they take part in the

message sequence

Set 6 23

Sequence Diagrams
k Represent one scenario
k Describes the dynamic behavior of a system
k Details how operations are carried out

● What messages are sent when

k Good at
● describing the behavior of several objects within a

single use case
● Showing collaborations between objects
● Describing system interaction w.r.t. time (objects

ordered from L to R – according to time)
k Not good at precise definition of the behavior

Set 6 24

Sequence Diagrams (2)
Basic Elements of a Sequence Diagram
k Objects

● Lifelines: time goes from top to bottom
● May be several instances of one class
● Boxes on lifelines show if object is active

k Messages
● Analogous to method calls in a program
● Can have parameters

k Special messages
● New — shown by position of object
● Delete — shown with a big X
● Return messages
● Self-calls

5

Set 6 25

Sequence Diagrams: Terms
k A lifeline, represents the time that an object

exists
● Represented as a vertical line.

k An activation bar represents the duration of
execution of the message
● Represented by a vertical rectangle

k A message call is represented by an arrow
between activation bars
● A simple message return is represented by a dashed

arrow
k A self call is when an object calls itself
k A note is used to clarify details

● Represented with a dog-eared rectangle
(Notes can be put into any kind of UML diagram) Set 6 26

Guards

kWhen a condition must be met
before a message is sent

kRepresented by brackets on the
message line [guard]

Set 6 27

Sequence Diagram Example:
Hotel Reservation

Set 6 28

Putting them together

kClass Diagrams

kScenarios

kUse Cases

kSequence Diagrams

kHow do they all work together

UML is iterative & Incremental

Set 6 29

Elevator Example: Basic Class
Diagram

Set 6 30

Elevator Example: Use Case

6

Set 6 31

Elevator Example: Scenario
k Passenger pressed floor button
k Elevator system detects floor button pressed
k Elevator moves to the floor
k Elevator doors open
k Passenger gets in and presses elevator button
k Elevator doors closes
k Elevator moves to required floor
k Elevator doors open
k Passenger gets out
k Elevator doors closes

Set 6 32

Elevator Example: Sequence
Diagram

Sequence Diagram for Serving Elevator Button

Set 6 33

Elevator Example: Sequence Diagram

Sequence Diagram for Serving Door Button
Set 6 34

Elevator Example:
Revising the Class Diagram

Set 6 35

State Transition Diagrams
k An event occurs at a point in time and

● transmits information from one object to another

k An action occurs in response to an event and
cannot be interrupted

k An activity is an operation with certain
duration that can be interrupted by another
event

k A guard is a logical condition placed before a
transition that returns either a true or a false.

Set 6 36

State Transition Diagrams:
Notation

kState symbol:

kTransition Symbol:

State Name

Actions

Event / Action

7

Set 6 37

Example: Simple Digital Watch
k Has a display and two buttons to set it

● A & B Button
k Watch has two modes of operation

● display time - hours:minutes
● set time – two modes

◘ Set minutes.

k The “A” button is used to select modes.
◘ Set hours

● On each press, the mode advances in sequence:
◘ display set hours set minutes display etc.

● Within the sub modes, the “B” button is used to advance the
hours or minutes once each time it is pressed.

k Buttons must be released before they can generate
another event.

Set 6 38

State Transition EX:
Digital Watch

Set 6 39

Activity Diagrams
k A flow chart with support for parallel behavior

k Branches and Merges model the conditional
behavior

k Branch: has a single incoming transition
multiple, conditional, outgoing transitions

k Merge: where conditional behavior terminates

Each branch has a corresponding merge

k Represented as a Diamond

Set 6 40

Activity Diagram (2)
k Forks and Joins model parallel behavior

k Fork: has a single incoming transition and multiple
outgoing transitions (exhibiting parallel behavior)

k Join: synchronizes the parallel behavior
● All parallel behaviors complete at the join

Each Fork has a corresponding Join

k Represented as a thick line

k Conditional Thread: A condition on the thread
originating from the fork to create an exception for the
join rule.

Set 6 41

Activity Diagram (3)
kSynch State: synchronizes different

activities so they make a transition to
the next activity at the same time

kWhen to use Activity Diagrams?
●When modeling parallel behavior or

●Documenting the logic of a business
process

Set 6 42

Activity
Diagram:

ATM Ex.

